
Available online at www.sciencedirect.com
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 189 (2007) 190–199
Removal of t1 noise from metabolomic 2D 1H–13C HSQC NMR
spectra by Correlated Trace Denoising

Simon Poulding a,1, Adrian J. Charlton b,*, James Donarski b, Julie C. Wilson c

a Department of Mathematics, University of York, York, YO10 5DD, UK
b Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York, YO41 1LZ, UK

c York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK

Received 23 May 2007; revised 6 September 2007
Available online 14 September 2007
Abstract

The presence of t1 noise artefacts in 2D phase-cycled Heteronuclear Single Quantum Coherence (HSQC) spectra constrains the use of
this experiment despite its superior sensitivity. This paper proposes a new processing algorithm, working in the frequency-domain, for
reducing t1 noise. The algorithm has been developed for use in contexts, such as metabolomic studies, where existing denoising tech-
niques cannot always be applied. Two test cases are presented that show the algorithm to be effective in improving the SNR of peaks
embedded within t1 noise by a factor of more than 2, while retaining the intensity and shape of genuine peaks.
Crown copyright � 2007 Published by Elsevier Inc. All rights reserved.
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1. Introduction

Metabolomics (here used to mean both metabonomics
and metabolomics) requires the ability to resolve and iden-
tify the metabolites present in biological samples contain-
ing a complex mixture of compounds [1,2]. NMR
experiments are a very effective analysis technique for met-
abolomic studies [3,4], and 2D NMR experiments are often
used to discriminate metabolites in samples containing a
large number of similar compounds by leveraging the addi-
tional spread of resonances across two dimensions [5,6].

NMR data acquired from complex mixtures of small
molecules contain signals from many compounds that
may have a wide range of concentrations. The analysis of
complex mixtures by NMR spectroscopy can be hindered
by the presence of high intensity peaks in the spectra, which
produce low intensity artefacts at a similar intensity to the
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resonances from low concentration compounds. The effect
of artefacts is an increase in the detection limit in the
regions of the spectra affected by the artefacts, thus
reducing the apparent sensitivity of the NMR experiment.

It is highly desirable to maintain maximum detection
sensitivity when using NMR to characterise unknown
matrices and the choice of NMR pulse sequence is crucial
for optimising the range of compounds that can be
detected. This is particularly true for the application of
multidimensional NMR techniques as the repetition times
can be considerable and thus, for a given experiment time,
the apparent sensitivity of the experiments can be low. The
Heteronuclear Single Quantum Coherence (HSQC) experi-
ment is particularly useful for the unequivocal determina-
tion of the presence of organic compounds within a
complex mixture. The distinctive combination of, for
example, 13C and 1H is often sufficient to determine the
presence of a specific compound in a mixture. For this
reason, the HSQC experiment has been utilised in many
metabolomic studies [7–14].

The 2D phase-cycled HSQC is inherently more sensitive
than similar two-dimensional experiments. For example, it
r Inc. All rights reserved.
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is at least
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times more sensitive than the equivalent gra-
dient-selected HSQC experiment [15]. However, the phase-
cycled HSQC experiment does not result in the desired
‘artefact free’ spectra and in particular can contain t1 noise.
(Fig. 1 shows an example of t1 noise in a phase-cycled
1H–13C HSQC spectrum of sucrose: the noise is seen as
‘ridges’ parallel to the F1 axis at the F2 frequencies of
intense peaks.) These artefacts result from the incomplete
cancellation of 12C signals owing to instrumental imperfec-
tions and external disturbances [16,17]. The largest t1 noise
ridges can be higher in intensity than genuine peaks associ-
ated with low concentration compounds, causing some
small peaks to be obscured by t1 noise. Relatively high
intensity t1 noise ridges can also hinder both manual and
automatic peak identification when using, for example,
thresholding techniques to pick peaks. The presence of
artefacts in 2D NMR data therefore limits the application
of fully automated NMR peak assignment programs and
thus automated compound identification using databases
such as [18–23], which would be highly desirable for meta-
bolomic studies. For example, Fig. 1 in [11] shows t1 noise
in a 2D 1H–13C HSQC spectrum: it would be difficult to
distinguish the high intensity t1 noise peaks in this spec-
trum from genuine peaks of a similar or lower intensity
using automated techniques.

Post-acquisition processing of the spectrum that
removes t1 noise, while retaining low intensity ‘genuine’
peaks, would enable the high sensitivity of HSQC experi-
ments to be leveraged in metabolomic studies without the
disadvantages that arise from t1 noise artefacts.

A number of highly effective denoising algorithms have
been described—such as Reference Deconvolution [24–26]
and the Cadzow procedure [27]—that might fulfil this role.
However, although these techniques are successfully
applied to 2D HSQC experiments in many other contexts,
their use in the domain of metabolomics is constrained by
Fig. 1. Example of t1 noise in a phase-cycled HSQC spectrum of sucrose.
(Only a small section of the F2 range is shown.)
specific pre-requisites of the algorithms. For example, Ref-
erence Deconvolution requires a strong, unconvoluted ref-
erence signal which is not always available in the highly
complex spectra typical of metabolomic samples. The Cad-
zow procedure requires the number of peaks in the sample
to be specified, but this information is not known a priori in
metabolomic studies.

This paper proposes a new frequency-domain processing
algorithm, named Correlated Trace Denoising, that has
been developed in response to the specific requirements
of metabolomics, and that can be used in situations where
existing denoising techniques are inappropriate. The algo-
rithm is able to remove much of the t1 noise while retaining
low intensity ‘genuine’ peaks that may be embedded within
the noise.

The correlation between t1 noise on different traces in
2D spectra is well-established [28] and this is the basis for
Correlated Trace Denoising. Here we used the phase-cycled
HSQC experiment to demonstrate an application of Deno-
ising for the removal of t1 noise. The presence of multiple
coherence transfer pathways in this experiment is such that
we would anticipate more dramatic improvements in the
efficacy of the algorithm when applied to experiments
where the correlation between t1 noise on different traces
within the 2D spectra is greater (e.g. gradient-selected
HSQC). The choice of the HSQC experiment was made
due to the usefulness of the data that it produces in the con-
text of metabolomic studies. The choice of the phase-cycled
experiment was determined by its inherent sensitivity and
therefore its potential for widespread application in the
metabolomics field.

The remainder of the paper is organised as follows. The
next section describes existing t1 noise reduction techniques
in more detail and explains why they cannot always be used
for spectra from metabolomic samples. Section 3
introduces the Correlated Trace Denoising algorithm,
and Section 4 provides evidence of its efficacy on two
different types of spectrum. Concluding remarks are in
Section 5, followed by details of materials and methods.

2. Existing noise reduction techniques for 2D NMR

2.1. Reference Deconvolution

Reference Deconvolution may be used for suppressing t1

noise [24–26], as well as for resolution enhancement [26,29].
The technique operates in the time-domain using a correct-
ing function derived by comparing the experimental form
of an F1 trace from a strong signal (usually that of the ref-
erence compound) with its theoretical form. By using a ser-
ies of traces through the t1 noise ridge of the reference
signal across a small range of F2 values, the technique
can also account for changes in the t1 noise in the t2 direc-
tion that correspond to changes during acquisition of the
FID.

However, reference Deconvolution may not always be
suitable for use with the highly complex spectra typical of



192 S. Poulding et al. / Journal of Magnetic Resonance 189 (2007) 190–199
metabolomic samples. In such spectra, a strong, unconvo-
luted reference signal may not be present. This may be due
to the absence of a robust chemical shift reference in the
sample, such as may be the case when using LC–NMR,
or due to signal overlap between potential reference signals
and the complex signal patterns obtained from the metab-
olite mixture. The Correlated Trace Denoising algorithm
described in this paper does not require such a reference
signal, and is particularly useful for application with data-
sets from complex mixtures.

2.2. Cadzow procedure

The Cadzow procedure can be used to directly denoise
the FIDs acquired in a 2D NMR experiment using a pro-
cess described by Brissac et al. [27]. It leverages mathemat-
ical properties of a matrix derived from the time-domain
signal to remove all signals apart from those resulting from
a specified number of resonance frequencies.

However, the technique requires the number of genuine
peaks in each FID to be specified, but this information is
not known a priori for metabolomic samples. In [27], the
peak count is obtained from a simple threshold-based peak
picker, and it is unclear whether small genuine peaks would
be identified by such a peak picker were they to be lower in
intensity than the t1 noise. In comparison, the Correlated
Trace Denoising algorithm does not require the number
of peaks to be known, and it is specifically designed to
retain small ‘genuine’ peaks of intensity lower than nearby
t1 noise.

3. Correlated Trace Denoising algorithm

3.1. Overview

The Correlated Trace Denoising algorithm is applied to
the frequency-domain spectrum after Fourier transforms
of the acquired signal. It is based on the observation that
there is significant similarity in the structure of t1 noise
ridges, even at widely separated F2 values. This suggests
that genuine peaks embedded within t1 noise can be distin-
guished by comparison with other t1 noise traces where the
peaks may not be present. However, the t1 noise ridges
change in amplitude and phase as F2 varies—for example,
the phase of the noise can rapidly change by p radians
across the centre of a ridge—requiring the algorithm to
adjust for both these factors.

The algorithm begins with the 2D complex frequency-
domain spectrum and consists of the following high-level
steps:

(1) The spectrum is separated into ‘peak’ and ‘noise’
component spectra using a thresholding technique.
The ‘peak’ spectrum contains large peaks with ampli-
tude greater than the t1 noise, while the ‘noise’ spec-
trum contains both the t1 noise and small genuine
peaks embedded within the noise.
(2) For each F1 trace (a 1D spectrum through the 2D
spectrum at a fixed F2 frequency—effectively a slice
parallel to the F1 axis) in the ‘noise’ spectrum, a
masking trace is derived based on the correlation
between traces. The criteria for deriving the mask
are chosen to remove noise but retain genuine peaks.

(3) The spectrum formed from the masking traces is sub-
tracted from the ‘noise’ spectrum, leaving a spectrum
consisting of the small genuine peaks. This is added
to the ‘peak’ spectrum to create a denoised spectrum.

The following subsections describe these steps in detail.
(Note that although the t1 noise does not normally have a
significant amplitude across the entire spectrum, it is found
that it is effective to apply the algorithm to all F1 traces
regardless of the amplitude of the t1 noise in that trace,
and so the steps below describe its application to the spec-
trum as a whole.)
3.2. Separation of peak and noise spectra

The complex spectrum is separated into ‘peak’ and
‘noise’ components using a threshold derived from a statis-
tical analysis of the spectrum. The noise separation is
applied to each F1 trace independently since the amplitude
of the noise varies with F2 but is relatively consistent along
each F1 trace.

In the following, the full complex spectrum is denoted as
Uðf1; f2Þ, and the F1 trace at the F2 value of f2 is denoted
Uf2
ðf1Þ. Each such trace is considered in its complex polar

form:

Uf2
ðf1Þ ¼ rf2

ðf1Þeihf2
ðf1Þ ð1Þ

where rf2
ðf1Þ is the amplitude (or modulus) and hf2

ðf1Þ, the
phase (or argument). It is the amplitude that is thresholded
to achieve the separation of the peak and noise compo-
nents, leaving the phase unchanged.

Analysis of the amplitude in traces through t1 noise
ridges suggested an approximate Rayleigh distribution
(or, equivalently, a v distribution with two degrees of free-
dom), which is consistent with the real and imaginary com-
ponents of the noise being normally distributed. This
distribution is assumed when deriving an appropriate
threshold. (The sensitivity of this distribution to experi-
mental settings was not investigated, but it would be
straightforward to analyse the distribution for different set-
tings and modify the derivation of the threshold
accordingly.)

The median value, ~Uf2
, of the trace is calculated, and the

denoising threshold, Kf2
, set to 2.921~Uf2

. The constant of
2.921 is chosen since 99.73% of the values lie in the range
0 to 2.921~Uf2

assuming a Rayleigh distribution: this pro-
portion is equivalent to a range of the mean ±3 times the
standard deviation for a normal distribution. Note that
the median value is used since it is more robust than the
mean—in particular, large peaks in the trace influence the
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median less than the mean—and so it is a better measure of
the central tendency of the noise amplitude.

The amplitude is thresholded using the formula:

rpeak
f2
ðf1Þ ¼

0 if rf2
ðf1Þ < Kf2

rf2
ðf1Þ �

K2
f2

rf2
ðf1Þ

otherwise

8<
: ð2Þ

This is a compromise between ‘hard thresholding’ that sim-
ply truncates at the threshold value, and ‘soft thresholding’
that subtracts the threshold from all values larger than the
threshold: it avoids the abrupt changes in amplitude of the
former and the reduction in peak volume that results from
the latter.

The amplitude for the noise component is calculated by
subtracting the peak amplitude from the trace amplitude,
i.e., rnoise

f2
ðf1Þ ¼ rf2

ðf1Þ � rpeak
f2
ðf1Þ, and so the corresponding

noise component of the trace is:

Unoise
f2
ðf1Þ ¼ rnoise

f2
ðf1Þeihf2

ðf1Þ ð3Þ

Fig. 2 shows a section of a spectrum after separation into
peak and noise components by the thresholding method
described above.

Separation using wavelet methods was also investigated,
but was not used since it added significant artefacts
(pseudo-Gibbs phenomena) to the denoised spectrum, even
Fig. 2. Example of peak and noise spectrum separation in a phase-cycled
HSQC spectrum of sucrose. (Only a small section of the F2 range is
shown.) (a) the peak spectrum; (b) the corresponding noise spectrum
(using a different intensity scale).
when using translation invariant wavelet decompositions
which have been reported to minimise such artefacts [30].

3.3. Identification of masking traces

The noise component spectrum produced in the previ-
ous step is processed to derive a ‘masking’ spectrum that
will be used to remove the t1 noise.

For each trace, Unoise
f2
ðf1Þ, in the noise spectrum, the set

of all other noise traces, fUnoise
f 0

2
: f 02 6¼ f2g, is considered.

From these, a subset—defined by a set M of f 02 values—is
chosen, and this subset of traces contributes to the masking
trace. The criteria used to choose M are described in the
following sections, and represent a balance between
removing as much t1 noise as possible, while retaining
genuine peaks embedded within the noise.

3.3.1. Highly Correlated

The criterion is that the set M contains only f 02 values for
which the correlation between the noise traces at f2 and f 02
is above a threshold. The correlation is measured using the
complex correlation, qðf2; f 02Þ, defined as:P

f1

n
Uf2
ðf1Þ � Uf2

o
Uf 0

2
ðf1Þ � Uf 0

2

n o
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f1

n
Uf2
ðf1Þ � Uf2

o2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

f1

Uf 0
2
ðf1Þ � Uf 0

2

n o2
s ð4Þ

where Uf2
is the mean value of the noise trace. When the

complex value of the correlation is considered in polar
form, the modulus, rq, represents the degree of correlation
and the argument, hq, measures the phase difference be-
tween the noise traces. Thus, this criterion is expressed
as: rqðf2; f 02ÞP RM , where RM is a chosen constant. The cri-
terion accounts for the changes in the structure of the t1

noise as F2 varies and so ensures that only very similar
traces (once phase differences are accounted for) contribute
to the mask.

3.3.2. Best Correlated

For some traces, Uf2
, many other traces, Uf 0

2
, are suffi-

ciently well-correlated to meet the Highly Correlated crite-
rion. However, it was found empirically that a more
effective masking spectrum was derived when only the best
of these highly correlated traces were used, rather than all
of them. This is the motivation for the Best Correlated cri-
terion: the rqðf2; f 02Þ values are ranked in order and only the
f 02 values for the best NM of these correlations are included
in the set M.

3.3.3. Outside Peak Width

The criterion is: f 02 is outside the range f2 � F M where
F M > 0 is a chosen constant. This criterion avoids the
removal of genuine peaks embedded within the noise by
excluding from the mask nearby traces which might also
include some signal from the same peak. Hence, the
parameter FM is set according to the F2 resolution of the
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experiment so that the range excludes much of the width of
a peak in the F2 direction.
3.3.4. Phase Balanced

This criterion balances the number of traces contribut-
ing to the mask that are (relatively close to being) in-phase
with the trace at f2 with the number of those that are out-
of-phase, and is designed to retain small peaks embedded
within the t1 noise. The criterion is that the number of f 02
values in M for which the argument (phase) of the complex
correlation is in the range �p=2 to þp=2 radians is the
same as the number of f 02 values whose correlation argu-
ment lies outside this range.

Typically the Highly Correlated traces forming the
masking spectrum are from a range of nearby traces (often
just outside the immediate neighbourhood that is excluded
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Fig. 3. An illustration of the effect of the Phase Balanced Criterion. (a)
and (b) Two F1 traces that might contribute to the masking spectrum; both
contain a signal from a small peak at P. (c) The same two traces after the
phases have been adjusted.
by the Outside Peak Width criterion). The masking spec-
trum should ideally consist of only the t1 noise signal,
but if these nearby traces forming the mask cover the F 2

width of another peak, then without the Phase Balanced
criterion, the mask may also contain much of this peak sig-
nal. (The peak signal in the traces may be a residual signal
after separation of the noise and peak spectrum (Section
3.2), or may be from a small peak embedded in the noise
that has insufficient intensity to be separated from the noise
by the thresholding method.) When this peak signal in the
masking spectrum coincides with a peak at a similar F1 fre-
quency in the original trace at f2, the peak in the original
trace may be incorrectly attenuated by the mask. Experi-
ments on spectra containing sets of small adjacent peaks
at similar F1 frequencies confirmed this type of attenuation:
without the Phase Balanced criterion, the intensity of some
of these genuine peaks is reduced.

Fig. 3 illustrates the effect of the Phase Balanced crite-
rion. The real part of two F1 traces that might contribute
to a masking trace are shown in (a) and (b). Trace (a) is
approximately in-phase with the trace at f2 (the latter is
not shown), and hence the argument of its complex corre-
lation with Uf2

is in the range �p=2 to þp=2 radians, while
trace (b) is approximately out-of-phase and its correlation
argument is outside the range. Both traces contain a signal
from a peak at the F1 frequency P. When these two traces
are combined to form a masking trace (see Section 3.4
below), the phases of the traces are adjusted so that the
t1 noise in each trace has the same phase. Part (c) shows
the two traces after the phase adjustment. The t1 noise will
be reinforced in the masking trace since the noise signals in
the phase-adjusted traces are in-phase. However, the peak
signals are now out-of-phase so they will cancel out one
another when the masking trace is constructed, and this
will avoid attenuation of genuine peaks at the same F1 fre-
quency as P.
3.4. Derivation of masking spectrum

Using the set of chosen f 02 values in the set M, an unnor-
malised masking trace, Umask�

f2
ðf1Þ, is derived using the

formula:

X
f 0

2
2M

w rqðf2; f 02Þ
� � Unoise

f 0
2
ðf1Þ

medianðjUnoise
f 0

2
jÞ

e�ihqðf2;f 02Þ ð5Þ

The denominator, medianðj Unoise
f 0

2
jÞ, robustly normalises

each trace before contribution to the mask to account for
differences in amplitude. The factor e�ihqðf2;f 02Þ adjusts the
phase of each f 02 trace to that of f2. wð�Þ is a weighting func-
tion that scales the contribution of a trace to the mask
depending on the correlation, and for the results in this pa-
per was chosen to be the modulus of the correlation itself.

The masking trace is adjusted so that its median modu-
lus (a measure of its signal amplitude) is the same as that of
the noise trace, using:
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Umask
f2
ðf1Þ ¼

median jUnoise
f2
j

� �
median jUmask�

f2
j

� �Umask�
f2
ðf1Þ ð6Þ
3.5. Construction of the denoised spectrum

The denoised spectrum is formed by subtracting the
masking spectrum (formed by the masking traces derived
in the previous step) from noise spectrum, and adding it
back to the peak spectrum:

Udenoised ¼ Upeak þ Unoise � Umask ð7Þ
3.6. Wavelet-based mask derivation

An alternative method of deriving the masking trace was
investigated. In this method, each noise trace is separated
using wavelet decomposition into signals at different scales.
The mask derivation method described above was then
applied to each level of wavelet decomposition separately:
for a given noise trace signal at a given decomposition
level, the mask was formed from the signals of other traces
at the same level of decomposition. This method would
accommodate changes in t1 noise across the spectrum that
were dependent on the ‘scale’ of the noise signal. However,
it was found that the mask derived was usually no better
than the method described above with the disadvantage
that significantly more processing was required.
4. Experimental investigation

4.1. Objectives

To demonstrate the efficacy of the technique, the Corre-
lated Trace Denoising algorithm was applied to two test
cases.

The first test case was a simple spectrum in which a sig-
nificant peak was embedded within a t1 noise ridge. The
sample was a solution of sucrose (250 mM) and glycine
(2 mM). The peak from glycine is the correlation between
the CaH and Ca and coincides with a t1 noise streak related
to a high intensity peak in the sucrose spectrum. The rela-
tive concentrations of sucrose and glycine were chosen so
that the amplitude of the glycine peak was similar to that
of the t1 noise ridge within which it was embedded.

The second test case was a more complicated spectrum
obtained from a sample of a soft beverage. It was designed
to test whether the algorithm was effective when the larger
number of genuine peaks potentially obscured the correla-
tion between t1 noise traces that the algorithm leverages.
4.2. Algorithm implementation

The algorithm was implemented using MATLAB, version
R14 SP2, from The MathWorks, Inc. The algorithm code
is available for download from www.csl.gov.uk/
downloads.

The spectrum is passed to the algorithm as MATLAB

matrices and the denoised spectrum is returned in the same
manner. In this way, the algorithm implementation is not
specific to the data file format of any particular NMR
acquisition and processing software: it is only necessary
to upload the data into MATLAB to create matrices repre-
senting the complex spectrum.

For the experiments described below, Bruker Topspin
software was used to acquire and process the spectra. Data
were passed to the correlated trace denoising algorithm
after Fourier transforms, baseline correction and phase
correction processing had been applied in Bruker Topspin.
Small MATLAB MEX functions (also available for down-
load) were used to import the Bruker Topspin data files
into MATLAB as matrices, and export the denoised spectrum
back to Bruker Topspin data file format.

As an indication of the speed of the algorithm, each
spectrum described here was denoised in approximately
30 s using a PC with a 1.86 GHz Intel Pentium 4 processor
and 1 GB of RAM.
4.3. Algorithm parameters

The algorithm parameters used to control the derivation
of the masking spectrum are a balance between removing
as much t1 noise as possible while retaining small genuine
peaks embedded within t1 noise ridges. The optimal bal-
ance, and therefore the parameter settings, depends partly
on the relative importance to the spectroscopist of these
two factors. (It is expected that the optimal parameters will
also depend on the nature of the NMR experiment itself
and the type of post-acquisition processing.)

For the results presented here, the following algorithm
parameters were used:

• minimum correlation modulus (RM): 0.5
• maximum number of traces (NM): 3 · the number of

data points in F2 quarter-height peak width
• minimum distance from trace (FM): 1� the F 2

quarter-height peak width

These parameter settings had been found, by experimen-
tation on similar test spectra, to give consistently good
results. The F2 quarter-height peak width was estimated
from the largest peaks in the original spectrum.
4.4. Results

4.4.1. Sucrose–glycine mixture

Fig. 4 shows part of the spectra from the sucrose and gly-
cine mixture before and after denoising. Before denoising,
the intensity of the glycine peak is smaller than some nearby
t1 noise artefacts. After denoising, the significant reduction
in noise surrounding the peak can be seen clearly, while the

http://www.csl.gov.uk/downloads
http://www.csl.gov.uk/downloads
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Fig. 4. A section of a phase-cycled HSQC spectrum from a mixture of
sucrose (250 mM) and glycine (2 mM). (a) before and (b) after denoising.
The arrow indicates the glycine peak at approximately 3.56 ppm 1H,
44.2 ppm 13C.
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Fig. 5. The ratio of the SNR after denoising to the original SNR for each
peak in the soft beverage spectra, plotted against the peak intensity in the
original spectrum. The ratio is the multiplicative improvement in SNR
after denoising: a ratio of 1 (the dashed horizontal line) indicates no
change and values above the line are improvements.
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intensity and shape of the glycine peak is retained (the peak
intensity is slightly larger in the denoised spectrum).

As a quantitative measure of the improvement after
denoising, the signal-to-noise ratio (SNR) for the glycine
peak was calculated. The method used was to estimate
the root mean square of the noise in the F1 trace containing
the peak as a multiple of the interquartile range—a mea-
sure which is relatively robust to real peaks embedded
within the trace—and assuming an approximately normal
distribution of the noise. In the original spectrum, the
SNR of the glycine peak was 2.67; after denoising, the
SNR was 6.26. This improvement by a factor of 2.4 was
largely as a result of the reduction in the t1 noise rather
than the slight increase in peak intensity after denoising.

4.4.2. Soft beverage
To assess the effect of the algorithm on the genuine

peaks in the spectrum, the original and denoised spectra
from the soft beverage sample were analysed by an experi-
enced spectroscopist. It was found that 39 peaks were
resolvable in the original spectra, and that all these peaks
were also resolvable in the denoised spectrum. Specifically,
the algorithm had removed no genuine peaks from the
spectrum.

The SNRs for these peaks were calculated using the
method described above. Fig. 5 plots the ratio of each
peak’s SNR after denoising to its original SNR (i.e. the
multiplicative improvement in SNR) against the peak’s
intensity in the original spectrum. Although the intensity
of some peaks decreased after denoising (while others
increased), the results show that the SNR of all peaks is
improved—or, at the very least, unchanged—by the deno-
ising algorithm.

In addition, a peak was identified in the denoised spec-
trum that could not be resolved by the spectroscopist in the
original spectrum. This peak arises from benzoic acid and
is the coupling between the carbon and the proton in the para
position to the carboxylic acid group. Fig. 6 shows a section
of spectrum containing this peak in both the original and
denoised spectra. The improvement in intensity of the peak
and the reduction in surrounding noise can be seen.
5. Conclusion

The rapid and routine deconvolution of complex mix-
tures requires the application of the most sensitive pulse
sequences. The presence of t1 noise in the data derived from
these experiments will thus impede the growth of the
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Fig. 6. A section of a phase-cycled HSQC spectrum from a sample of a
soft beverage. (a) before and (b) after denoising. The arrow indicates a
peak arising from benzoic acid at approximately 7.56 ppm 1H, 134 ppm
13C.
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knowledge base in the relatively new field of metabolomics,
due to the necessity for painstaking manual spectral assign-
ment or the omission of useful data from subsequent anal-
yses. This paper demonstrates that Correlated Trace
Denoising can permit sensitive pulse sequences to be used
for metabolomics studies by reducing the intensity of t1

noise.
Both test cases show that the algorithm significantly

improves the SNR of small genuine peaks embedded within
t1 noise, enabling the identification of low intensity correla-
tions such as those arising from low concentration metab-
olites. At the same time, the algorithm maintains the shape
and intensity of genuine peaks in the spectrum.

In the context of metabolomic studies, Correlated Trace
Denoising has potential advantages compared to existing
noise reduction techniques: it avoids the need for the strong
unconvoluted reference signal used by reference Deconvo-
lution and, unlike the technique based on the Cadzow pro-
cedure, does not need to estimate the number of genuine
peaks.

A particular motivation for a denoising technique, such
as Correlated Trace Denoising, that is suitable for meta-
bolomic studies is to enable an automated procedure for
the identification of the chemical shifts of all of the peaks
in a 2D NMR spectrum or those selected by multivariate
analysis [31]. These chemical shifts would then be used as
database search queries to determine the identity of the
compounds from which they arose. Such an approach
would permit the composition of a mixture of metabolites
to be automatically determined with minimum user inter-
vention, but would be unable to distinguish high intensity
t1 noise from genuine peaks associated with low concentra-
tion metabolites. The application of automated chemical
shift assignment tools in the biomolecular NMR field is
well-established [32,33] and these methods are highly appli-
cable to metabolomics data, in the absence of spectral
artefacts.

Future work may investigate whether refinements to the
wavelet-based method of constructing the masking spec-
trum—described above, but not used for the results in this
paper—may lead to further improvements in t1 noise
reduction by allowing independent adaptation to the struc-
ture of the noise at different scales.

6. Experimental

6.1. Materials

All chemicals used were of a purity of P 99%. Deute-
rium oxide (2D2O) was supplied by Goss Scientific Instru-
ments Ltd. (UK), 3-trimethylsilyl[2,2,3,3-D4] propionic
acid (TSP) was supplied by Avocado Research Chemicals
Ltd., di-potassium hydrogen phosphate and di-hydrogen
potassium phosphate were supplied by BDH Chemicals
Ltd., and sucrose and glycine were supplied by Sigma
Aldrich UK. Ultrapure water was provided from an Elga
Option 2 water purifier.

6.2. Sample preparation

The sucrose and glycine solution was prepared by dilu-
tion of stock solutions of sucrose (1 M dissolved in
2D2O), glycine (50 mM dissolved in 2D2O) and phosphate
buffer (1.0 M, 10 mM TSP, pH 7.0 dissolved in 2D2O) with
2D2O. The final concentration of the sucrose and glycine
solution was 250 mM sucrose, 2 mM glycine, 100 mM
phosphate buffer pH 7.0, 1 mM TSP.
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Soft beverage samples were degassed prior to sample
preparation. Degassing was carried out by sonication for
10 minutes. About 480 lL of the degassed solutions were
added to labeled 5-mm NMR tubes containing 60 lL of
buffer prepared in 2D2O (1.2 M, 10 mM TSP, pH 8.5)
and 60 lL of sodium azide (10 mM dissolved in 2D2O).

6.3. Methods

Sample temperature: 300 K.
Reference compound: internal standard of 3-trimethyl-
silyl[2,2,3,3-D4] propionic acid, sodium salt (TSP)
(0 ppm for both F1 and F2).
Spectrometer: Bruker ARX 500 NMR spectrometer
tuned to 1H signal at 500.1323506 MHz (13C at
125.7678506 MHz).
2D Phase program:

• HSQC correlation via double INEPT transfer
• 90� pulse lengths: 9.2 ls for 1H; 16.5 ls for 13C
• carbon coupling constant: 145 Hz
• acquisition was recorded with decoupling of 13C via

composite pulse decoupling (CPD) with a garp
sequence

Spectral width: F2 6.666 kHz; F1 20.12 kHz.
Acquisition data points: F2 1536; F1 384.
Window function: QSINE.
Baseline correction: automatic (‘quad’ mode).
Post-Fourier transform data points: F2 2048; F1 1024 (com-
plex data points in both directions).
Phase correction: manual.
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